14 research outputs found

    A Reconfigurable Computing Solution to the Parameterized Vertex Cover Problem

    Get PDF
    Active research has been done in the past two decades in the field of computational intractability. This thesis explores parallel implementations on a RC (reconfigurable computing) platform for FPT (fixed-parameter tractable) algorithms. Reconfigurable hardware implementations of algorithms for solving NP-Complete problems have been of great interest for research in the past few years. However, most of the research that has been done target exact algorithms for solving problems of this nature. Although such implementations have generated good results, it should be kept in mind that the input sizes were small. Moreover, most of these implementations are instance-specific in nature making it mandatory to generate a different circuit for every new problem instance. In this work, we present an efficient and scalable algorithm that breaks out of the conventional instance-specific approach towards a more general parameterized approach to solve such problems. We present approaches based on the theory of fixed-parameter tractability. The prototype problem used as a case study here is the classic vertex cover problem. The hardware implementation has demonstrated speedups of the order of 100x over the software version of the vertex cover problem

    Beta Macrophyta Diversity Analysis in the Temporary Pond Habitats of Vettangudi Birds Sanctuary

    Get PDF
    Three temporary ponds of Vettangudi birds sanctuary situate in very close proximity, located in Sivaganga District, Tamil Nadu state of India. However similar eco-climatic conditions prevailing at these pond habitat, those ponds experience the varying nature of biotic interactions. Since the habitat conditions and their land-use pattern have the major role on the vegetation diversity. Temporary ponds of Vettangudi Birds Sanctuary has the characteristic alternate drying and inundation at varying levels and this environmental condition in addition to the biotic influence over the habitat ecology and its vegetation diversity. Understanding this specific relationship is pivotal in the development of management guidelines in the pond habitat and wildlife management. The aim was to investigate the floristic composition and diversity analysis of the floor vegetation of benthic and shore-line of temporary ponds of Vetttangudi Birds Sanctuary in four different seasons in a year. A wide range of Sorenson’s similarity index was found existed among the experimental ponds. Margleaf’s richness index values were also observed with variations and the occurrence of floristic composition and their diversity variations were attempted to relate with the prevalent habitat conditions, experienced with varying kind of biotic influence

    Quantum information processing by NMR using a 5-qubit system formed by dipolar coupled spins in an oriented molecule

    Full text link
    Quantum Information processing by NMR with small number of qubits is well established. Scaling to higher number of qubits is hindered by two major requirements (i) mutual coupling among qubits and (ii) qubit addressability. It has been demonstrated that mutual coupling can be increased by using residual dipolar couplings among spins by orienting the spin system in a liquid crystalline matrix. In such a case, the heteronuclear spins are weakly coupled but the homonuclear spins become strongly coupled. In such circumstances, the strongly coupled spins can no longer be treated as qubits. However, it has been demonstrated elsewhere, that the 2N2^N energy levels of a strongly coupled N spin-1/2 system can be treated as an N-qubit system. For this purpose the various transitions have to be identified to well defined energy levels. This paper consists of two parts. In the first part, the energy level diagram of a heteronuclear 5-spin system is obtained by using a newly developed heteronuclear z-cosy (HET-Z-COSY) experiment. In the second part, implementation of logic gates, preparation of pseudopure states, creation of entanglement and entanglement transfer is demonstrated, validating the use of such systems for quantum information processing.Comment: 23 pages, 8 figure

    Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms

    Get PDF
    Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.Comment: 28 pages, 10 figures. Journal of Magnetic Resonance (In Press

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm

    Get PDF
    Physical implementation of Quantum Information Processing (QIP) by liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2 nuclei of a molecule, is well established. Nuclei with spin>>1/2 oriented in liquid crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates have been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two novel developments. First, we implement a quantum algorithm which needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multi qubit gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The controlled-not operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. This method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.Comment: 16 pages, 3 figure
    corecore